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Abstract
This study presents a new machine learning strategy to address the disease diagnosis classification problem that com-
prises an unknown number of disease classes. This is exemplified by a software called Ellipsoid Clustering Machine 
(ECM) that identifies conserved regions in mass spectrometry proteomic profiles obtained from control subjects and 
uses these to estimate classification boundaries based on sample variance. The software can also be used for visual 
inspection of data reproducibility. ECM was evaluated using mass spectrometry protein profiles obtained from se-
rum of Hodgkin’s disease patients (HD) and control subjects. According to the leave-one-out cross validation, ECM 
completely separated both groups based only on the information derived from four selected mass spectral peaks. 
Classification details and a 3D graphical model showing the separation between the control subject cluster and HD 
patients is also presented. The software is available on the project website together with online interactive models of 
the dataset and an animation demonstrating the method.
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Introduction

Biomarkers and proteomics
During the last 40 years the possibility of early 

cancer detection employing biomarkers came to the fore-
front as a promising field to transform medical diagnosis, 
methods for measuring disease progression and response 
to treatment (CONRADS et al., 2004). However, the 
pursuit for a single biomarker to discriminate a unique 
pathology has been unsuccessful until today. Even PSA 
(prostate specific antigen), used to diagnose prostate 
cancer when highly expressed in men, can sometimes give 
misleading results, besides not being specific (TROYER 
et al., 2004).

A goal of proteomics is to distinguish between 
various states of a biological system to identify pro-
tein expression differences. Mass spectrometry based 
proteomics has been employed for differential protein 
expression analysis through various techniques including 
stable isotope labeling, ion current values, and numbers 
of tandem mass spectra (spectral “counting”) to name 
a few (LIU et al., 2004). Among the first and widely 
adopted proteomic techniques for biomarker discovery 
stands the 2-dimensional gel electrophoresis (2DE). 
Traditionally 2-DE studies were limited to comparative 
analysis but two important advances lead this technique 
into the “omics” era: the use of immobilized pH gradients 
(GORG et al., 1998) to create more reproducible gel 
patterns and the use of mass spectrometry to identify 
differentially expressed proteins (BJELLQVIST et al., 
1982; HENZEL et al., 1993; WESTERMEIER et al., 
1983). 2-DE contrasts different collections of proteins, 
(e.g. from cells or tissues), by comparing their migration 
according to their molecular weight and isoelectric point. 
Differences between the resulting protein spot collections 
are determined by using gel pattern analysis software. 
Recent developments in this field add fluorescent tags 
to label proteins from different samples and separate 
them in the same gel with a technique called differential 
gel electrophoresis (DIGE) (Unlu et al., 1997; VON et 
al., 2001). This dramatically improved the comparison 
of gel patterns and minimized reproducibility issues. 
Differentially expressed proteins can be excised from 
the gel and the tryptic peptide mass fingerprint (PMF) 
analyzed by mass spectrometry. The mass spectra data 
from the PMFs are used to identify the proteins which 
could give clues for patient treatment and can be used 
as biomarkers for early diagnosis (WEINGARTEN et al., 
2005). Certainly, the greatest drawback of the 2DE is 
that it is extremely laborious and difficult to automate.

In 2002, mass spectra generated by surface en-
hanced laser desorption ionization time of flight (SELDI-
TOF) coupled to computer algorithms, identified a set 
of key proteins that, according to the authors, could 
discriminate control subjects (CS) from ovarian cancer 
patients (ARDEKANI et al., 2002). The advantage of this 
approach over the 2DE strategy is that gels are no longer 
required, opening the way to high throughput studies. 
Later, a similar approach was used for breast cancer, using 

SELDI technology with “unified maximum separability 
analysis” (LI et al., 2002). Another work discriminated 
prostate cancer from CS using decision trees with boost-
ing techniques (QU et al., 2002) and classical statistical 
methods. SELDI involves the analysis of small sets of 
proteins, pre-selected by their affinity properties with 
the SELDI plate, however, depletion of proteins can 
result in loss of potential biomarkers and changes in the 
proteomic pattern (MEHTA et al., 2003).

The pursuit for the identification of multiple bio-
markers to assist in the early diagnosis and prognosis of 
disease, and the construction of probabilistic models is 
crucial, especially to assist in the indication for the start 
of a treatment and to aid in decisions for the clinical 
regimen for improved chances of success. However, the 
identification of bona fide sets of biomarkers challenges 
the field of proteomics, requiring more sensitivity and 
quantification capacity than existing techniques (gel 
electrophoresis – 1D and 2D; chromatography online 
with tandem mass spectrometry). This also challenges the 
science of artificial intelligence for pattern recognition. 
Several factors limit such developments, such as: avail-
ability of small numbers of clinical samples with a gold 
standard diagnosis, high cost of equipment and reagents, 
the high number of parameters per sample, considerable 
variability between samples in the same class, limitations 
in the reproducibility of proteomic techniques for the 
detection and simultaneous quantification of thousands 
of proteins, and the lack of knowledge of a probability 
density function describing the variables representing the 
expression level of each protein for the case under study. 
The understanding of the interplay between the different 
components of a biological system and the patterns of dif-
ferential qualitative and quantitative expression of such is 
still far away, even with all the current “omics” efforts. 

The pattern recognition problem
The construction of mathematical models to allow 

a machine to learn from experience and make inferences 
has long been a topic of discussion and philosophical 
debate. The supervised learning problem comprises the 
construction of machines that can learn, with a special-
ist, and then successfully classify future events. This 
approach is described as follows (VAPNIK, 1995): 
A certain phenomenon generates events x randomly 
and independently according to a probability density 
function p(x). These events are classified as belonging 
to one of the k existing classes according to a specialist. 
For the sake of simplicity, let k = 2; however this as-
sumption can be generalized to higher values of k, since 
by subdivision each can be divided into two classes as 
well. The specialist performs classification according to 
a conditional probability density function p(y|x) where 

 (y = +1 indicates that the specialist 
labeled event x as belonging to the positive class, and y 
= –1 for the negative class (–1)). The properties of the 
event generating phenomenon and the specialist’s deci-
sion rules are unknown, however both exist.

Let C be the set of functional dependencies [F(x)] 
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that serve as decision rules for the classification problem 
at hand. The functions are represented in their paramet-
ric form as F(x, α) where α is a parameter belonging to 
the set φ. The value α* specifies the function F(x, α*). 
The set φ is arbitrary, and can be composed of scalars, 
vectors or abstract elements. All the functions of C are 
indicating functions (i.e. having output values limited to 
+1 or –1). After observing l pairs 

x1, y1;...;xl, yl

(the event is represented by x and the classification ac-
cording to the instructor by y), one should choose, among 
the class of indicating functions F(x, α), the function 
having its probability of classification with minimal dif-
ference when compared with the specialist.

In other words, the minimum of the functional

should be obtained to minimize the risk. Given these 
facts, the classification problem is reduced to minimize 
the expected risk in the light of the empirical data.

Pattern recognition and biomarkers
One of the most challenging tasks in classification 

through machine learning is to find a method applicable 
to large scale multi-class problems where the features (in 
this case biomolecules) and classes (here represented by 
the control group and the “pathology group”) are huge. 
Various studies in the literature, similar to the ones 
above, are mostly dichotomic, always discriminating 
between control subjects and patients with a given pa-
thology. These approaches usually employ a supervised 
learning algorithm to train over a dataset or a selected 
array of up or down-regulated features (disease associ-
ated biomolecules) and establish a separating decision 
boundary between two classes. 

The long-term goal of these studies is to develop 
specialist systems capable of diagnosing whether a bio-
logical sample originated from a diseased subject or not. 
The most successful approach in practice is to convert 
the multiclass classification problem to various binary 
classification problems and proceed with “one against 
all” or “all pairs” classification strategies (MAO et al., 
2005; NIIJIMA et al., 2005; XU et al., 2007). How-
ever, if the described specialist system is faced with an 
unknown class (a disease that the specialist system was 
never trained to recognize), the existing set of binary 
classifiers may fail to satisfactorily detect the pathology 
and can output a Type II error (classify erroneously a 
patient as healthy). Given the existence of innumerous 
pathologies and that false negative classification is the 
“worst mistake” a classifier can perform for the nature 
of the problem at hand, the development of heuristics 
for this problem remains open.

Methods and algorithm
This work introduces a new rationale to serve as a 

front line for classifying biological sample profiles, given 
the multiclass nature of the disease diagnosis dilemma. 
Our method aims at the identification of protein sets 
whose expression remains conserved in control subjects, 
having the expectation that some of these proteins could 
be altered in patients. Differently than mapping both up 
and down-regulated biomolecules, this procedure delin-
eates a “pathology free” domain (conserved domain) in 
a feature space and could serve as a simple and straight 
forward first step for disease diagnosis.

The proposed specialist system would firstly use 
a classifier based on “conserved domains” to evaluate 
the probability for an unknown sample to belong to the 
“healthy” class or not. If the sample lies outside the con-
served region boundaries, only then, the specialist system 
would rely on its collection of specialized (binary) clas-
sifiers to further try and classify the pathology at hand. 
The traditional approach that directly applies the various 
binary classifiers could lead to a false conclusion when 
facing a new class since none of the classifiers would be 
trained to recognize the new disease. On the other hand, 
our approach could have a higher chance of inferring if 
an unknown pathology is possibly present since it was 
trained over conserved regions of protein profiles from 
control subjects; therefore, it could still be able to alert 
for the possible presence of a new disease classes.

Here we developed the classification algorithm, 
and present a proof of principle of the concepts above. 
First, we acquired mass spectra profiles from serum of 
control subjects and patients with Hodgkin’s disease. We 
recall that Hodgkin’s disease (HD) belongs to a group 
of cancers called lymphomas that may occur in a single 
lymph node, a group of lymph nodes or in other parts of 
the lymphatic system such as bone marrow and spleen. 
HD tends to spread in an orderly way from one group 
of lymph nodes to the next.

We then developed the algorithm named ellipsoid 
clustering machine (ECM) having roots in the previously 
described concepts to search for the conserved regions in 
the mass spectral protein profiles of the control subjects. 
Finally, the algorithm used the leave-one-out (LOO) cross 
validation to evaluate whether it could correctly classify 
among control subjects and patients with Hodgkin’s 
disease. Mass spectral peaks that could correspond to 
putative HD biomarkers were also tracked using the new 
feature selection method described above. 

The dataset used for this work originated from 30 
samples obtained from healthy blood donors and 30 
samples from HD patients that were collected at the Cle-
mentino Fraga Filho Federal University Hospital at Rio 
de Janeiro. Diagnosis and histological classification were 
confirmed by a hematopathologist, according to WHO 
criteria. Patient evaluation included a complete history, 
physical examination, complete blood differential count, 
biochemical profile, HIV serology, chest radiography, 
computerized tomography of the chest, abdomen and 
bone marrow biopsy. The sera were stored as aliquots 
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at –80°C. Demographic, tumor staging, and pathologi-
cal information about the patients were then stored in 
a database. Sera from case patients were obtained at or 
after diagnosis but before treatment. All CS were free 
of cancer on the basis of clinical history and physical 
examination and no additional imaging approaches or 
routine marker assays were performed. All participants 
provided written consent for this study and the project 
was approved by the Federal University of Rio de Janeiro 
Institutional Ethical Review Board. A 1D gel analysis was 
then carried out to search for evidence of differentially 
expressed proteins and to serve as a pre-screening for all 
samples (CARVALHO et al., 2005). The procedure for 
acquiring mass spectra profiles used in this work was 
described previously (CARVALHO et al., 2007). The 
dataset analyzed also originated from the cited work. 
It is important to note that two mass spectra were ac-
quired for every subject and then averaged to diminish 
MS noise; the mass spectra data were then binned to 
1 Dalton windows by summing intermediate values. 
Examples of proteomic profiles can be seen in Figure 1.

Results
The ECM algorithm was applied to the proteomic 

profile dataset to define the “conserved regions” based 
on the control subject class according to a univariate 
approach. This is performed as follows: for each mass 
spectral peak bin, the intensity of the corresponding 
mass spectral peak from each CS is used to map the cor-
responding data point to a one dimensional feature space. 
After all the CS’s are mapped, decision boundaries are ex-
tended from each CS’s data point until a predetermined 
number of CS’s are engulfed by these boundaries. Since 
this process is carried out in a one dimensional space, the 
decision boundaries will be composed of “lines”. A list of 
the mass spectral profile regions that are most conserved 
can then be pointed as the ones whose decision boundar-
ies had to be extended the least to satisfy such criteria. 
Further details of the algorithm and its source code are 
made available in the project website.

After selecting the conserved regions of the mass 
spectral profiles, the final hyper ellipsoid classification 
boundaries can be modeled. This is achieved by using 
only the data from regions of the mass spectra that were 
marked as conserved. From then on, ECM maps the CS 
to the feature space according to the mass spectral peak 
intensities. We note that now, this feature space has the 
same cardinality as the number of spectrum regions se-
lected and the intensity of each spectral peak bin is used 
to map the CS according to a coordinate value. Hyper-
ellipsoids originating from each CS are then positioned 
and extended, similar to the process above, having axis 
growth rates proportional to the variance of each respec-
tive dimension in a loop process. The growth of all el-
lipsoids ceases when every ellipsoids’ center is engulfed 
by a user determined number of ellipsoids originating 
from other CS. Classification is performed by checking 
whether data from a new spectrum is positioned within, 
or out of the hyper-ellipsoid boundaries.

According to the leave-one-out cross validation 
for the dataset from our Hodgkin’s disease patients, 
ECM correctly classified all CS and all HD patients. 
Figure 2 shows the decision boundary created based on 
the CS data represented by the blue ellipsoid cluster; 
HD patients are represented as small red spheres. We 
observe that the ellipsoid axe sizes are proportional to 
data variance for each respective direction. The radii of 
the red spheres are equal to an arbitrary constant used 
for mere illustration. A result worthy of note is that, in 
general, distant red spheres represented patients in an 
advanced, disseminated stage of the Hodgkin’s disease 
while spheres closer to the ellipsoid cluster represented 
patients in a localized early stage of HD.

To visually evaluate how well the selected conserved 
regions can discriminate CS against a determined pathol-
ogy, a 3D viewer is also made available. The viewer is 
capable, when working with 3 dimensions (3 MS peaks 
bins), of displaying ellipsoids representing CS in blue and 
patients in red spheres. The center positioning of each 
ellipsoid in the feature space is given by the normalized 
mass spectra intensity of each respective biomarker for 
a given subject. The internet browser should be used 
to view the VRML model (Virtual Reality Modeling 
Language); however a VRML viewer must be previously 
installed. The Cortona VRML client is suggested since 
it is freely available for download at http://www.paral-
lelgraphics.com/products/cortona/. 3D interactive models 
are available on the project website.

Discussion

Pattern recognition and bioinformatics
Two main issues characterize feature selection chal-

lenges in the domain of bioinformatics: the large input 

Figure 2 - Ellipsoids are extended from CS represented in 
Euclidian feature space and define a “Hodgkins disease free 
domain”. The red spheres represent data from HD patients; 
all of them are located outside the cancer free domain.
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agreement is that there is no single universally optimal 
feature selection technique (YANG et al., 2005); addi-
tionally, the existence of more than one subset of features 
that discriminates the data equally well (YEUNG et al., 
2005) should be considered. We believe that each feature 
selection strategy has its own niche so it is important 
to know its idiosyncrasies, when to effectively apply it, 
and also to be aware of its limitations. For example, the 
output provided by univariate feature rankings can be 
more intuitive to understand because it analyzes each 
feature independently.  On the other hand, protein sub-
groups that could possibly interact can only be detected 
through multivariate techniques, but requiring far more 
computation time.

ECM and disease diagnosis
Using clustered ellipsoids to define a decision 

boundary can be a conservative approach, but it is still 
able to classify data that are not linearly separable in the 
feature space (Figure 3). The ellipsoid method is able to 
encapsulate and efficiently mold to such data and still 
generalize as seen in Figure 3. The presented method 
was optimized right from its beginning to deal with the 
life science multi-class problems showing a new rationale 
to the traditional classification approaches. Certainly, to 
further test and validate the method, samples from vari-
ous types of cancer should be tested and a very large and 
diverse control subject group should be mapped. 

By mapping what is supposed to be normal, we imi-
tate an artificial immune system which is also trained to 
be at ease with what is normal, and react to what is “not 
normal”. The immune system continuously learns, since it 
would be unlikely to have a prior knowledge of all existing 
pathologies. The new method points toward a path that 
combines mass spectrometry with ECM to define a cancer 
free Euclidian domain based on a hyper ellipsoid cluster 
boundary.  ECM could be interpreted as the geometrical 
definition of a standard, and the ECM algorithm could 
possibly be applied to other fields of science to track and 
map standards in quality control, for example. This could 
be the basis for a multi-class classifier, offering a fast, 
initial hypothesis as a first step to narrow the possible 
solution classes. As a second step, this classifier could be 
combined with other methods (ex. SVM) to then achieve 
greater confidence binary classifications.

Availability and requirements
• Project name: Ellipsoid Clustering Machine
• Project home page: http://www.dbbm.fiocruz.

br/labwim/bioinfoteam/templates/archives/ecm/
• Operating system(s): Platform independent 
• Programming language: Perl 5.8.6 
• Other requirements: A viewer such as the Cortona 

VRML client is necessary to view the interactive 3D 
models. Cortona can be obtained at http://www.paral-
lelgraphics.com/products/cortona/

• License: Creative Commons Attribution-NonCom-
mercial-NoDerivs 2.0 License. 

Figure 3 - This figure demonstrates how ECM can be ap-
plied to classify data that are not linearly separable (1). 
A single sphere decision boundary that encompasses all 
the control subjects (blue dots) did not fully separate the 
control subjects from the patients. However, ellipsoid 
boundaries grown from the data points originated from 
each control subject can better mold to the dataset (3).

dimensionality, and limitations in the dataset size. To 
deal with these problems, various feature selection tech-
niques have been designed by experts from the machine 
learning and data mining fields. To date, the overall 
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• Mass spectra: the raw dataset, or txt files are also 
available from authors upon request

• Restrictions for non-academic use apply: licensing 
is needed.
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