
Sup295

Abstract
This work discusses the implementation of BioProvider, a tool that efficiently provides data for biological applications.
It uses ad-hoc buffer management policies and specific process scheduling control to deal with very large sequence
data. We explain how to consider a non-intrusive approach in order to encourage the use of BioProvider in a trans-
parent way while keeping the original applications unchanged. The first instantiation of BioProvider is tailored to
BLAST, the most popular sequence comparison program.

Keywords
Process scheduling, biological data access, BioProvider

Sérgio Lifschitz
Departamento de Informáti-
ca da Pontifícia Universidade
Católica do Rio de Janeiro,
Rio de Janeiro, Brazil
maira sergio@inf.puc-rio.br

Original Articles

BioProvider implementation issues: a non-
intrusive tool for process scheduling and

biological data access
DOI: 10.3395/reciis.v1i2.Sup.99en

Maíra Ferreira
de Noronha
Departamento de Infor-
mática da Pontifícia Uni-
versidade Católica do Rio
de Janeiro, Rio de Janeiro,
Brazil
maira@inf.puc-rio.br

[www.reciis.cict.fiocruz.br]
ISSN 1981-6286

SUPPLEMENT – BIOINFORMATICS AND HEALTH

Introduction
This work proposes a non-intrusive implementation

strategy for a data-oriented tool that provides biological
sequences, efficiently manages buffer and allows process
scheduling control when executing with biological appli-
cations. This tool, called BioProvider, is kept transparent
for all applications, as the communication with the latter
is done through a device driver that replaces all read and
write function calls to the sequence database files.

One of the most important tasks for the analysis of
molecular biology data is sequence comparison, which is
the basis for more elaborated manipulations. Information
of gene and protein functionality, the position of genes
on chromosomes and other information are inferred
through the comparison with known sequences, stored
with the corresponding headers in databases such as
Genbank [Benson et al., 2005] and SWISS-PROT [SIB,

2007]. The programs of the BLAST family [Altschul et
al., 1990] are the preferred and most popular comparison
tools in these cases.

This paper details the instantiation of BioProvider
for running with BLAST programs. Our tool can be
straightforward extended in order to deliver data for
other applications, use distinct buffer management poli-
cies and provide data in different formats from those
read by the applications, converting it during runtime.
In particular, we show here a great advantage of the non-
intrusive approach: BioProvider can be used with two (or
more) different BLAST implementations, NCBI BLAST
[NCBI, 2007] and WU-BLAST [WU, 2007], which are
the most popular ones.

This article is organized as follows: in the next
section, we first discuss a buffer management proposal
specific for BLAST, one chosen instantiation well ex-

RECIIS – Elet. J. Commun. Inf. Innov. Health. Rio de Janeiro, v.1, n.2, Sup. 1, p.Sup295-Sup302, Jul.-Dec., 2007

Sup296 RECIIS – Elet. J. Commun. Inf. Innov. Health. Rio de Janeiro, v.1, n.2, Sup. 1, p.Sup295-Sup302, Jul.-Dec., 2007

plained here. Then, Section 3 describes the BioProvider
architecture, taking into consideration the most suitable
page substitution policy. Section 4 gives further details
with respect to process scheduling. Finally, Section 5
shows some experimental results that illustrate the
advantages of running BLAST in the presence of Bio-
Provider and Section 6 concludes and lists some possible
future work.

Buffer management for BLAST
The BLAST program consists of local alignment

heuristics for biosequences and is used for the compari-
son of query sequences with sequence databases. These
databases have specific formats and are composed of
three files: a sequences file (*.psq), another file with the
corresponding headers (*.phr) and an index file (*.pin)
that associates the sequences with the corresponding
headers [WU, 2007]. The BLAST database is originated
from a text file in the FASTA format [NCBI, 2007], us-
ing the formatdb tool that is provided with BLAST.

The BLAST basic strategy has three stages and is
described in Altschul et al. [1990]. During the second
stage of the algorithm, the sequence file is fully scanned.
It is also the stage where most disk accesses are made.
As BLAST reads directly from the operating system
files, the sequence files are read in an inefficient way in
some common situations. Indeed, this happens when
the sequence file does not fit entirely in main memory.
Many processes are running at the same time, as no
specific buffer sharing techniques are used. Therefore,
parts of the sequence database will be copied from disk
to memory multiple times during the second stage for
the execution of each process.

This second stage of the algorithm has also the fol-
lowing characteristics:

• The sequences (and corresponding pages) in the
database are sequentially read, from the beginning to
the end. Therefore, it is possible to guess the next pages
that will be read and copy them to the buffer beforehand
(prefetching).

• The order in which the query sequence is com-
pared with each sequence in the database does not mat-
ter. A BLAST process can begin the comparison at any
sequence of the database as long as, by the end of the
stage, every sequence has been compared.

By taking the described characteristics into account,
(LEMOS et al., 2003) suggested an ad-hoc buffer man-
agement strategy for BLAST. The idea involves the use
of memory structures for sequence storage named rings.
These consist of memory buffers to which the database
sequences are copied. Updates follow a FIFO-like page
substitution policy. While present in this ring, data is
shared by all the running processes that are on the second
stage. Ring pages may be refreshed when all processes
have already read the corresponding information.

One clear advantage of this strategy is to allow each
BLAST process, once activated, to start reading the se-
quence file from the first data page available at the ring

– not necessarily the first in the sequence file – as the
order in which the sequences are read does not matter.
The beginning of the sequence file is copied again to the
ring as soon as each reading cycle of the file is finished.
Therefore, the new process will be able to read all the
sequences before the actual first sequence read, regard-
ing completeness.

This strategy is very interesting for use with BLAST
because it allows not only data prefetching but also
buffer sharing, reducing the read time of sequence data
from disk to memory. BioProvider is instantiated in this
paper using a similar strategy, as will be described in the
following section.

The non-intrusive approach for
bioProvider

In order to provide data to molecular biology pro-
grams, the BioProvider tool can be implemented in two
different ways, whether changing (intrusive) or keeping
(non intrusive) the original program source code. The
implementation of the intrusive method requires the
substitution of each read function call on the code for
other functions that communicate with a data provider
process. The latter will, on his turn, manage the buffer in
memory. In MAURO et al. (2005), the usage of a device
driver was suggested for the implementation of the non-
intrusive method, so as to simulate the database files and
carry out the communication between the BLAST and
provider processes.

A device driver is a software layer of the operating
system that allows the communication between applica-
tions and hardware and software devices, hiding the way
the direct communication with the devices is done. The
idea proposed in MAURO et al. (2005) is to substitute
the biological database files for special files (called de-
vice files) associated with a character device driver. By
executing the open and read functions for these files,
the molecular biology applications execute instead the
functions implemented by the driver, that carry out the
communication with the database provider process.

In this work, we have chosen to implement the
buffer management in a non-intrusive way through the
creation of a device driver. By this means, it is not neces-
sary to modify the application source codes. Moreover,
the tool can be used with different BLAST versions
without needing to change its own source code. We have
also chosen to implement the Linux device driver as a
kernel module. BioProvider works with BLAST processes
that read amino acid databases.

In order to use BioProvider, the BLAST database
files must be substituted by device files associated with
the device driver. When executing the open and read
functions for these files, the BLAST processes execute
instead the functions implemented by the driver that
carry out the communication with the database provider
process and control concurrency and process blocking.
Figure 1 shows the architecture of BioProvider and the
communication with BLAST:

Sup297

Concerning the BioProvider architecture, a database
provider process manages the ring in main memory and
must answer all read requests from BLAST processes.
The communication between the latter and the provider
process is done through functions implemented in the
driver. The original database files for BLAST are replaced
by special files associated with the driver. Therefore,
once these files are accessed as they were the original
database, the BLAST processes run actually the driver’s
functions. The provider process knows the exact location
for files and eventually their contents become available.
These processes wait in blocked state for the requested
information. The provider process wakes up when the
information is available. The provider process plays the
role of BLAST processes scheduler, deciding which proc-
ess is executed first.

Buffer management here is similar to the strategy
presented in Section 2. Only one main memory ring is
considered, multiple rings still need to be evaluated for
future versions. The sequences file contains all sequences,
one after the other, in compressed format. These are
fetched into the ring incrementally. The BLAST processes
that are still in the sequential reading step start to read
from the content already present in the ring. Thus, if
the beginning of the input file (that corresponds to the
very first sequence) is not at the ring when the process
requests it, the provider replies with the start position
of some sequence in the ring.

It is mandatory that BLAST processes start ac-
cessing the sequence files at the beginning of a given
sequence. Otherwise, they would possibly interpret parts
of sequences as full sequences. To avoid this situation,
the provider process must identify the beginning of
sequences in the file. This may be done by identifying
within the sequences file where sequences start. This
point is the same for those 2 versions previously studied.
Once the sequences file reading starts, all read-requests
then will get as the answer the content of a misplaced file
position. The requested position is added to the position
where the process has started reading. When the content

from the end of file is obtained, the next content would
be from the beginning of the file. This way the process
would read also the content where reading had started.
When all active processes would have gone through a
given ring position, this position is updated from the
sequences file.

An important characteristic present in this buffer
management policy is that the information that will be
fetched is copied to buffer before the actual request. The
buffer update follows a FIFO – first in, first out – strategy.
However, buffer regions with random sizes may be up-
dated all together, instead of updates with fixed size.

Another relevant observation is related to the buffer
management strategy. Processes may get information that
is different from the one originally requested, what is
not the case for typical buffer management techniques.
Processes receive “fake” file positions in order to focus
on a non-intrusive BLAST version. All processes that
have started to read the sequence files from some posi-
tion that is not the first one will have a slightly different
view from the actual file. This would lead to execution
problems if the provider process and the driver control
only read from the sequences file. Other database files are
provided by the operational systems, with no modifica-
tion. Indeed, as the index file has links to the sequences
file, these would be pointing at wrong positions of the
file that BLAST uses. The index file links sequences in
the sequences file to these file annotations in annota-
tion-files. We can check in Figure 2 that this information
will create wrong file associations.

A possible solution to this problem would be to add
control when the index file is read. Its content could then
be modified on-the-fly before sending it to each BLAST
process. This way the pointers would not be misplaced.
This alternative is feasible but brings some possible
drawbacks, besides a higher cost for CPU and memory
use. However, the worst part would be that this way
one must know the actual index file format in order to
modify it. This format varies among distinct implementa-
tions and BLAST versions more than the sequence file

Figure 1 - The BioProvider architecture.

RECIIS – Elet. J. Commun. Inf. Innov. Health. Rio de Janeiro, v.1, n.2, Sup. 1, p.Sup295-Sup302, Jul.-Dec., 2007

Sup298

format. Therefore, the database server program would
need to adapt and change considerably to work with all
BLAST flavors.

We have decided here to adopt another strategy: we
will pre-process the database in FASTA format and create
multiple “images” of the sequence file, each copy corre-
sponding to a different order for reading these sequences.
To do this we need only to modify the sequence order in
the FASTA file just before creating distinct database in-
stances with BLAST usual tools. We keep all file instances,
except the sequence file, which needs only one instance.
To avoid the creation of a large number of instances, it
is important to give limits to the sequence file positions,
where processes start reading. For example, we may divide
all sequences in n blocks with m sequences each. BLAST
processes will be allowed to start reading the sequences
file only at each block start. BioProvider controls also all
access to other files (pin and phr). BLAST gets distinct

Figure 2 - Misplaced pointers with formatted BLAST files.

instances for those index and header files, depending
whether the reading process has started.

We illustrate this database pre-formatting step in
Figure 3. If we choose to divide into 4 blocks, BLAST
processes read the sequence file in 4 different block
orders: 1-2-3-4, 2-3-4-1, 3-4-1-2 e 4-1-2-3. This cor-
responds to rotations for these blocks, while the order
of sequences remains the same. Each order has its own
index and annotation files and these are provided to the
BLAST processes.

This approach increases the amount of disk space
needed but makes our provider independent of índex
and annotations formats. Actually, as the index file is
much smaller than other files, and the headers file is
rarely accessed – only to obtain annotations for the most
similar sequences to the input sequence –, the I/O cost
remains about the same even with multiple instances
for those files.

 Figure 3 - Database pre-formatting.

RECIIS – Elet. J. Commun. Inf. Innov. Health. Rio de Janeiro, v.1, n.2, Sup. 1, p.Sup295-Sup302, Jul.-Dec., 2007

Sup299RECIIS – Elet. J. Commun. Inf. Innov. Health. Rio de Janeiro, v.1, n.2, Sup. 1, p.Sup295-Sup302, Jul.-Dec., 2007

When the provider process starts, it executes the
read function implemented by the driver and waits
blocked for data requisitions. When a BLAST process
tries to read the database files, it executes the read func-
tion of the device driver, which informs the requested file
pages. The read function then blocks the BLAST process
and wakes up the provider process, which receives the
data requisitions. The provider process manages the ring
buffer in memory and provides the requested data by
executing the write function of the driver. The data can
be read from the ring or directly from the database files.
The write function then wakes up the blocked process
that requested the provided information. The BLAST
process receives the information and continues its execu-
tion. Finally, the provider process executes again the read
function of the driver and is blocked in order to wait for
new data requisitions.

If the buffer management method described in
Section 2 is used and the BLAST processes start read-
ing the ring when the present content is not the begin-
ning of the sequence file, the processes will ask for one
content of the sequence file and receive another one. In
this case, some problems may arise. The problems may
happen because the index file has pointers to positions
in the sequence file and the headers file that are used to
associate each sequence in one file to the corresponding
header in the other. The pointers to the sequence file
will probably point to a content of the file that is not
the original one and the associations with the headers
will therefore be wrong.

The best solution found to the described problem
requires the limitation of the sequence file positions at
which the processes can start reading, by dividing the
sequences into n blocks of m sequences. The formatdb
BLAST tool can then be used to create instances of the
index and header files that correspond to each of the or-
ders in which the sequences can be read. As there are only
m positions of the sequence file where the processes can
start reading, which are the beginning of each sequence
block, there will be m instances of the index and header
files. The provider process will provide to each BLAST
process the files corresponding to the sequence block at
which its reading began.

Although this solution augments the disk storage
space that is used, it makes BioProvider independent
from the index and header file formats, as only the
sequence file format must be known by the provider
process in order to identify the beginning positions of
the sequences. The sequence file format varies very little
between different BLAST versions.

Process scheduling
Besides managing the ring in memory, the provider

process chooses at each moment the process that will re-
ceive the answers. We have created some heuristics as to
give preference to processes that are falling behind when
reading the ring or requesting data from other database
files. An important objective is to assure that all processes
will be able to finish their executions, avoiding starvation,

which may happen if new processes start all the time,
forbidding the refreshment of the ring. This problem can
be solved by delaying, from time to time, the response to
newly started processes. As these processes have not begun
to read the database, they do not hinder the refreshment
of the ring, and the other processes can therefore proceed
in reading and updating the ring data.

Due to some characteristics of BioProvider and
BLAST, some factors have great influence in process
performance. The most important factors are database
size and the number of BLAST processes running con-
currently. If the database fits entirely in memory, the
operating system will probably read it from disk only
once and maintain the database in memory while pro-
cesses are reading. This is the most desired situation, in
which processes will have better performances. Moreover,
in this situation, a buffer management tool will not be
needed. On the other hand, if the database is too big and
cannot be kept entirely in memory, BLAST performance
will deteriorate, as parts of the database will be copied
many times to memory when different processes access
the same database.

BioProvider improves the performance of BLAST
processes by providing them with data that is already in
memory and being read by other processes. Therefore,
the number of page faults is smaller. The bigger the da-
tabase size and the number of BLAST processes reading
from the same database, the greater are the advantages
of using BioProvider, because the probability of processes
requesting data that are not available in memory is higher
in those cases.

Other key factors that influence process perfor-
mance are the size of the buffer ring and the number
of blocks in which the sequence file is divided. The ring
should be big enough to store part of the sequence file
data that has not yet been requested and to have, at
any given time, the beginning of a block of the sequence
file. Thus, ring updates need not be frequent and new
processes do not have to wait too long to start reading
from the ring. However, if the ring is too big, it may use
too much memory and therefore deteriorate the perfor-
mance of other processes, especially if virtual memory
or swapping is needed.

The ideal size of sequence file blocks depends on the
size of the buffer ring. If it is bigger than the ring, chances
are that several new BLAST processes will have to wait
for a block beginning to appear in the ring before they
start reading. On the other hand, if the blocks are too
small, there will be many instances of index and header
files, which may take up much disk space.

The strategies adopted by the provider process to
answer read requests and schedule processes have great
influence in process performance. Therefore, several
strategies were implemented varying the rules for process
priorities. Each time the provider process receives a read
request, it chooses the BLAST process to answer follow-
ing certain criteria that are shown below:

1. If the priority is always given to processes that are
reading from the buffer ring, one would expect the total

Sup300

executing time to be smaller, as reading from the ring is
faster than reading from disc. However, this strategy does
not lead to good results. As each process reads data out
of the ring both before and after the ring stage, if there
are processes reading from the ring, several processes may
be delayed before entering the ring stage or after finish-
ing it. Thus, the implemented strategies give priority to
read requests of data out of the ring or alternate giving
priority sometimes to processes in the ring stage.

2. After deciding whether to give priority to pro-
cesses in the ring stage or in another stage, the chosen
process is the one that has requested the smallest file
position or the data in the smallest ring position. By this
means, the processes that have fallen behind in the ring
stage can advance and stop blocking ring update.

3. It is important to ensure that the running BLAST
processes do not suffer starvation, waiting eternally
blocked for the answers to read requests. However, when
the provider process starts answering the requests of a
new BLAST process, the ring update is blocked for a
certain amount of time. This happens because the se-
quence file block by which the process will start reading
is chosen at the moment that it receives the answer to
the first read request, as it will read the index file that
corresponds to the chosen block before entering the ring
stage. If new BLAST processes are very frequent, ring
update may never occur. To solve this problem, from
time to time the provider process refuses to answer the
requests of new BLAST processes, so that ring update
can be ensured.

Finally, it is important to mention how input se-
quences influence BLAST process performance. In aver-
age, BLAST processes that have bigger input sequences
tend to have longer running time, as more similarities
with the database are found. Input sequences that are
very similar to those of the database produce the same
effect. As some BLAST processes are faster than others,
at any given moment some processes may be ahead in
the ring stage, waiting for ring update, while others may
have fallen behind and be blocking the update.

This problem can be minimized if multiple rings
exist and processes with similar velocities read from

the same ring. However, the solution has not yet been
implemented. As an alternative, if the input sequences
are known beforehand (one input per BLAST process),
the BLAST processes can be run ordered by the size
of the input sequence. Another solution is to run the
processes in separate groups with input sequences of
similar size.

Preliminary results
We have implemented BioProvider initially for

Linux core 2.4 and 2.6, such as Linux Fedora 3 and 4,
and Linux Red Hat 8. BioProvider main modules are a
data provider program, a data driver and a program that
completes the provider’s execution. It is worth mention-
ing that BioProvider may be used either with NCBI
BLAST (from version 2.0) and WU-BLAST 1.4, due to
the similar sequences file format. We have developed also
some tools that automatically prepare the database and
that create configuration files. The user may customize
the way he uses BioProvider by defining the ring’s size in
main memory and the number of sequences per block.

Preliminary practical results were obtained in order
to evaluate NCBI-BLAST in the presence of BioProvider.
We have run our experiments on a 3 GHz Pentium 4-
based computer with 512MB of RAM. The sequence
database initially considered was nr, the protein database
available at [NCBI, 2007]. This is one of the most im-
portant databases for biologists, using over 1.2GB and
it contains information about many different organisms.
Its protein sequence database size, for these experiments,
was about 1.3GB.

We have evaluated the runtime for 50 BLAST
processes varying the amount of available RAM and the
ring size, each BLAST process starting about 1 minute
one after the other. We have divided the nr database in
5 blocks, each containing about the same number of se-
quences. With the help of GRUB (boot loader) program,
we could configure the RAM actual size. Our 50 input
sequences were randomly chosen from ecoli.aa, swissprot
and ptaa databases, and each BLAST process used one
of these as its query sequence. Next, we present some
of our preliminary test results:

Table 1 – BLAST normal execution

RAM size 256M 512M

Average Runtime (secs) 2:40:57 1:11:15

Table 2 – BLAST execution with BioProvider

RAM size 256M 512M

Ring size 25M 50M 100M 25M 50M 100M

Average Runtime (secs) 27:55 29:24 42:11 24:05 34:45 25:26

Speedup 83% 82% 74% 66% 51% 64%

RECIIS – Elet. J. Commun. Inf. Innov. Health. Rio de Janeiro, v.1, n.2, Sup. 1, p.Sup295-Sup302, Jul.-Dec., 2007

Sup301

From tables 1 and 2 we can observe that those 50
BLAST processes running in the presence of BioProvider
have obtained from 51% up to 83% of improvement.
Many other results, also very positive for BioProvider,
may be checked in NORONHA (2006).

Conclusions
An instantiation of BioProvider was implemented

to efficiently provide data to BLAST by doing buffer
management, data controlling and process scheduling,
taking into account specific characteristics of BLAST
database access. BioProvider was implemented with a
non-intrusive approach through the usage of a device
driver that carries out the communication between
processes. Therefore, the application source codes can
remain unchanged and the tool works at the same time
with versions of NCBI BLAST and WU-BLAST. More-
over, BioProvider can be easily extended to provide in
the future other database solutions for molecular biology
applications.

The tests done with BioProvider showed many
situations where it was possible to improve BLAST
performance. It was also possible to verify the influence
of some factors on BLAST using BioProvider. In future
works, the tool can be extended in many points, some
of which are listed below:

• To implement the possibility to provide BLAST
with nucleotides database files. Similar buffer manage-
ment and process scheduling techniques can be used.

• To introduce and analyze the performance of other
buffer management techniques and strategies of choosing
the process to answer. One possibility is the creation of
multiple rings in memory, to which processes with similar
speed may be allocated, in order to avoid slow processes
to hinder the execution of the quicker processes while
reading from the ring.

• To use other techniques of providing data to
BLAST, such as the dynamic creation of index files to be
supplied at each process. This would make unnecessary
the division of the database into blocks and the creation
of different instances of the index and note files.

• To use BioProvider to provide other database
solutions to BLAST. A work to be done is the inclusion
of file compression and decompression techniques, in
order to enable the storage of data in different formats
than those seen by the processes, translating them during
runtime in a similar way as ROSA et al. (2007). By this
means, to make BLAST more efficient, techniques that
include both time management and buffer compression
can be developed.

• Extend BioProvider to provide database solutions
for other Bioinformatics tools. One of the extensions
consists of providing buffer management techniques
to the FASTA tool (PEARSON, 1991). As it is also
a biosequence comparison tool, FASTA shares many
characteristics with BLAST and can benefit from similar
buffer management techniques. Other tools can benefit
from using BioProvider for different ends, due to its
transparency characteristics.

The source code for BioProvider as well as usage
instructions can be found on www.inf.puc-rio/~blast.

Bibliographic references
ALTSCHUL, S., et al. Basic Local Alignment Search
Tool, Journal of Molecular Biology, 215, p.403-410,
1990.

BENSON, D.A. et al. GenBank, Nucleic Acids Re-
search, Jan 1;33 (Database issue):D34-8, 2005.

LEMOS, M.; LIFSCHITZ, S. A Study of a Multi-Ring
Buffer Management for BLAST, 1st International Work-
shop on Biological Data Management, In conjunction
with DEXA, 2003, p.5-9.

MAURO, R.; LIFSCHITZ, S. An I/O Device Driver for
Bioinformatics Tools: the case for BLAST, Genetics
and Molecular Research (GMR), v.4, n.3, p.563-570,
2005.

NCBI. “NCBI BLAST”. Available at: <http://www.ncbi.
nlm.nih.gov/BLAST/>. Accessed: 2007.

NORONHA, M.F. “Controle da Execução e Disponibi-
lização de Dados para Aplicativos sobre Seqüências Bio-
lógicas: o Caso BLAST”, 2006. Dissertação (Mestrado).
Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro, Riode Janeiro.

PEARSON, W. Searching Protein Sequence Libraries:
Comparison of the Sensitivity and Selectivity of the
Smith-Waterman and FASTA algorithms, Genomics,
v.11, p.635-650, 1999.

ROSA, J.; LIFSCHITZ, S. “Um Estudo de Compactação
de Dados para Biosseqüências”, 2006. Dissertação (Mes-
trado). Departamento de Informática, Pontifícia Univer-
sidade Católica do Rio de Janeiro, Rio de Janeiro.

SIB. “Swiss-Prot and TrEMBL”. Available at: <http://
bo.expasy.org/sprot/>. Accessed: 2007.

WU. “WU-BLAST”. Available at: <http://blast.wustl.
edu>. Accessed: 2007.

RECIIS – Elet. J. Commun. Inf. Innov. Health. Rio de Janeiro, v.1, n.2, Sup. 1, p.Sup295-Sup302, Jul.-Dec., 2007

Sup302

About the authors

Sérgio Lifschitz
He has obtained an electrical engineering degree (1986), a MSc degree also in electrical engeneering (1990),
both from at the Pontifícia Universidade Católica do Rio de Janeiro and Ph.D in Informatics - Databases,
from the École Nationale Supérieure des Télécommunications, ENST Paris, France (1994). During 2005 he
worked at UC San Diego (USA) as a post-doctoral visiting scholar. He is currently an Associate Professor
at PUC-Rio in the Informatics Department. His main research interests are in the field of databases, either
with (1) autonomous computation and self-tuning systems or (2) tools and data management systems for
bioinformatics applications.

Maíra Ferreira de Noronha
Holds a degree in Computer Engeneering from (2003) and Master in Informatics (2006), both from Pontifícia
Universidade Católica do Rio de Janeiro. Her research experience is mainly in the field of databases, bioinformatics
and computational intelligence, auto-tuning of databases, genetic algorithms and neural networks. Currently
she works as system analyst at Petrobrás.

RECIIS – Elet. J. Commun. Inf. Innov. Health. Rio de Janeiro, v.1, n.2, Sup. 1, p.Sup295-Sup302, Jul.-Dec., 2007

